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ABSTRACT: This work aims to compare different 
nonlinear functions for describing the growth curves 
of Nelore females. The growth curve parameters, their 
(co)variance components, and environmental and ge-
netic effects were estimated jointly through a Bayes-
ian hierarchical model. In the first stage of the hierar-
chy, 4 nonlinear functions were compared: Brody, Von 
Bertalanffy, Gompertz, and logistic. The analyses were 
carried out using 3 different data sets to check good-
ness of fit while having animals with few records. Three 
different assumptions about SD of fitting errors were 
considered: constancy throughout the trajectory, linear 
increasing until 3 yr of age and constancy thereafter, 
and variation following the nonlinear function applied 
in the first stage of the hierarchy. Comparisons of the 
overall goodness of fit were based on Akaike informa-
tion criterion, the Bayesian information criterion, and 
the deviance information criterion. Goodness of fit 
at different points of the growth curve was compared 
applying the Gelfand’s check function. The posterior 

means of adult BW ranged from 531.78 to 586.89 kg. 
Greater estimates of adult BW were observed when the 
fitting error variance was considered constant along the 
trajectory. The models were not suitable to describe 
the SD of fitting errors at the beginning of the growth 
curve. All functions provided less accurate predictions 
at the beginning of growth, and predictions were more 
accurate after 48 mo of age. The prediction of adult BW 
using nonlinear functions can be accurate when growth 
curve parameters and their (co) variance components 
are estimated jointly. The hierarchical model used in 
the present study can be applied to the prediction of 
mature BW in herds in which a portion of the animals 
are culled before adult age. Gompertz, Von Bertalanffy, 
and Brody functions were adequate to establish mean 
growth patterns and to predict the adult BW of Nelore 
females. The Brody model was more accurate in pre-
dicting the birth weight of these animals and presented 
the best overall goodness of fit.
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INTRODUCTION

Several studies suggest the Brody function as the 
most appropriate to describe beef cattle growth, be-
cause of its goodness of fit, computational simplicity, 

interpretability of parameters, and model convergence, 
even if data are missing (Bullock et al., 1993; Kaps 
et al., 2000; Arango and Van Vleck, 2002). However, 
other studies reported that other functions better fitted 
cattle data. DeNise and Brinks (1985) and Beltran et 
al. (1992) reported the Richard function as the best to 
fit cattle growth records. Mazzini et al. (2003) reported 
that Brody and Richards functions presented less con-
vergence rate and were inadequate for the description 
of Hereford growth. Oliveira et al. (2000) and Santoro 
et al. (2005) concluded that the Von Bertalanffy and a 
modified logistic function, respectively, were the best to 
model Zebu cattle data.
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In most comparisons of nonlinear functions, a 2-step 
analysis was performed. The growth function param-
eters were predicted for each animal, and as a second 
step, environmental effects and (co)variance compo-
nents were estimated. The adjustment errors from the 
first step were ignored, and information on relatives was 
not considered when the curve parameters were esti-
mated. Also, not all information was used, and animals 
with few records could not be included in the analysis. 
Model goodness of fit is generally evaluated using the 
variance of fitting errors, the mean square error, and 
the coefficient of determination. These criteria are more 
influenced by adjustments at the end of the curve due 
to a scale effect. In the present work, these problems 
were avoided. Functions were compared under a nested 
Bayesian model that allowed estimation of the joint 
posterior distribution of curve parameters, (co) variance 
components, and environmental and genetic effects. 
Functions were compared using different criteria that 
permit comparisons of both the overall predictive abil-
ity and predictive ability at different points of the curve 
using cross-validation.

MATERIALS AND METHODS

Animals were raised in different commercial herds, 
and special conditions or treatments were not needed to 
collect the records. Therefore, animal care committee 
approval for the specific study was not required.

Data

The data set used for fitting growth curves was pro-
vided by Associação Nacional de Criadores e Pesqui-
sadores (Ribeirão Preto, São Paulo, Brazil), which has 
been running the Nelore Breeding Program since 1987 
(Lôbo et al., 2005). Animals from 5 different herds, all 
located in the southeast of Brazil, were evaluated. The 
animals were weighed every 90 d from birth to 540 d of 
age, and those remaining in the herd for reproduction 
continued to be weighed at 90-d intervals. Births mainly 
occurred in spring and summer, and the animals were 
weaned on average at 210 d of age. Only records from 
the following individuals were included in the analysis: 
animals reared on pasture without supplemental feed-
ing, animals weighing at least 20 kg at birth, animals 

that did not have a foster dam, animals whose BW re-
cords were within the range of the mean of all animals 
at the same age ± 3 SD, animals that did not receive 
special veterinary treatment, and animals born from 
cows aged 2 to 18 yr at calving and belonging to a 
contemporary group with at least 3 animals. The con-
temporary groups were defined nesting the variables: 
herd, management group (animals in the same pasture 
paddock), season and year of birth, and first or greater-
parity cow.

The analysis was carried out using 3 different data 
files, which included data from animals that were or 
were not weighed close to maturity. The smallest data 
set (DS4) contained records from animals weighed at 
least once after 4 yr of age; 95% maturity is expected 
to be reached at this point (Garnero et al., 2005). The 
second data set (DS3) had records from the same ani-
mals as in the previous data set (DS4), plus data from 
those animals culled before 4 yr of age but that had 
at least 1 record after 3 yr of age. The largest data 
set (DS2) included records from all animals weighed 
at least once after 2 yr of age. Thus, model goodness 
of fit was evaluated in different scenarios, increasing 
the number of individuals that were not weighed close 
to maturity due to selection decisions. Because of the 
small number of males that met the conditions set for 
each data file, only females were evaluated. A summary 
of the data sets is shown in Table 1.

Models

A Bayesian hierarchical model as described by Va-
rona et al. (1997), Blasco et al. (2003), and Forni et 
al. (2007) was employed to describe the growth curve 
of each animal. It was assumed that individual tra-
jectories followed a nonlinear function, and each pa-
rameter of this function was influenced by genetic and 
environmental effects described in a linear model. Four 
nonlinear functions frequently used for the description 
of growth curves in beef cattle (Oliveira et al., 2000; 
Arango and Van Vleck, 2002) were applied in the first 
stage of the hierarchy: Brody, Von Bertalanffy, logistic, 
and Gompertz. These nonlinear functions are detailed 
in Table 2. The conditional distributions of data given 
the Brody and logistic functions are described in the 
Appendix. The conditional distributions of data given 

Table 1. Summary of the different data sets analyzed to compare growth functions 

Item DS41 DS32 DS23

No. of records 21,232 25,069 28,625
No. of animals 830 1,041 1,260
No. of contemporary groups 108 119 131
No. of sires 105 137 153
No. of dams 632 768 883
No. of animals in the relationship matrix 3,014 3,552 4,079

1Data for females weighed at least once after 4 yr of age.
2Data for females weighed at least once after 3 yr of age.
3Data for females weighed at least once after 2 yr of age.
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other functions were presented in Blasco et al. (2003) 
and Forni et al. (2007).

Fitting errors were considered to be independent 
between individuals and normally distributed, and 3 
different assumptions about SD of fitting errors were 
compared. Initially, the SD were considered constant 
throughout the growth trajectory. Then, linear varia-
tion until 3 yr and constancy thereafter was considered. 
The third assumption was that the SD of fitting er-
rors varied following the same nonlinear function em-
ployed to describe the data, as proposed by Blasco et 
al. (2003).

In the second stage of the hierarchy, an animal model 
was employed describing the genetic and environmen-
tal effects on parameters of the growth functions. In 
addition to the additive genetic effects, effects of con-
temporary group, age of dam at calving (in years), and 
maternal permanent environment were included. At 
this stage, residual effects were also considered to be 
independent between individuals and normally distrib-
uted. However, in view of the biological meaning of pa-
rameters, the residual covariance between parameters 
of the same individual was considered to differ from 
zero [i.e., the residual (co)variance matrix (R) had a 
block diagonal structure].

Inference

The joint posterior distribution of growth curve pa-
rameters, (co)variance components, and environmental 
and genetic effects was estimated using a hierarchical 
Bayesian model. The prior distribution N 0 0,A GÄ( )  

was assumed for genetic effects. Prior distributions for 
the nuisance parameters, (co)variance matrices, and 
parameters of fitting errors models were flat with limits 
that guaranteed proper posterior distributions. A de-
tailed description of fully conditional distributions for 
hierarchical multistage models is given in  Sorensen and 
Gianola (2002). The fully conditional posterior distri-
butions of all unknowns of the Gompertz model were 
described by Blasco et al. (2003) and of the Von Berta-
lanffy model by Forni et al. (2007). Few modifications 
are required to obtain conditional distributions using 

other functions, and a brief description is provided in 
the Appendix.

Samples of the parameter a of all functions and of 
the parameter b of the Brody function were drawn from 
normal distributions; see Eq. [6] and [7] in the Appen-
dix. However, the conditional posterior distributions of 
parameter b of other functions and of parameters k and 
M do not have a closed form. The fully conditional pos-
terior distribution of fitting error variance was propor-
tional to a scaled inverted χ2 distribution, and the dis-
tributions of the parameters of models used to describe 
its variation along the trajectory also do not have a 
closed form. The fully conditional posterior distribu-
tions of the (co)variance matrices were proportional 
to inverted Wishart distributions, and the conditional 
posterior distribution for each location parameter was a 
normal distribution defined by the coefficients and the 
right-hand side of the mixed model equations. Here, the 
system of mixed model equations was built considering 
each parameter of the growth function as a record; see 
Forni et al. (2007) for details.

Gibbs sampling (Casella and George, 1992; Sorens-
en and Gianola, 2002) was used to identify samples 
from known distributions, and the Metropolis-Hastings 
algorithm (Chib and Greenberg, 1995; Sorensen and 
Gianola, 2002) was applied in other cases. Normal dis-
tributions centered on the values sampled in the imme-
diately previous iteration were used as proposal distri-
butions. Markov chains of 550,000 samples were carried 
out with sampling intervals of 50. The last 10,000 sam-
ples of each chain were used to estimate the features of 
marginal distributions. The burn-in period was greater 
than that indicated by the Raftery and Lewis (1992) 
test. Lack of convergence in each chain was tested using 
the criterion of Geweke (1992) and the Gelman and Ru-
bin (1992) test. Autocorrelations between samples and 
Monte Carlo errors (Geyer, 1992) of means, modes, and 
medians of the marginal distributions were calculated.

Goodness of Fit

Both the overall predictive power and goodness of fit 
at different points were evaluated using predictive den-
sities. The observed values yij were compared with the 

Table 2. Nonlinear functions applied to describe the growth curves 

Model Function1

Brody (Brody, 1945) y a b k tij i i i j ij= - -( )é
ëê

ù
ûú
+1 exp e

Von Bertalanffy (Von Bertalanffy, 1957)
y a b k tij i i i j ij= - -( )é

ëê
ù
ûú
+1

3
exp e

Logistic (Nelder, 1961)
y a k tij i i j

M

ij
i

= + -( )é
ëê

ù
ûú

+
-

1 exp e

Gompertz (Laird, 1965)
y aij i

b
ij

i

kitj

= +
-( )

æ

è
çççç

ö

ø
÷÷÷÷÷

-

exp
exp

e

1yij represents the BW of animal i at age j; ai, bi, ki, and Mi are the parameters of each animal; εij is the fit-
ting error.

Forni et al.498

 by guest on November 28, 2011jas.fass.orgDownloaded from 

http://jas.fass.org/


densities of their predictions Yij, which were obtained 
using all other data y_ij. The estimation of the density 
of Yij given y_ij requires the distributions of parameters 
in the absence of yij. Estimation of such distributions 
would be computationally infeasible, because it would 
require repeating the sampling process of the growth 
curve parameters and their (co)variance components 
to predict each data point. Therefore, the predictive 
densities were estimated using the importance sampling 
procedure described by Gelman et al. (1995). The sam-
pling distribution used was the same as that detailed 
by Forni et al. (2007).

Overall goodness of fit was evaluated using different 
criteria. Maximum likelihood principles of model com-
parison invariably lead to choosing the greatest possi-
ble dimension. Thus, criteria belonging to the family of 
penalized maximum likelihood methods were applied. 
These criteria are based on the recommendation of 
choosing the model for which the likelihood of the data 
minus a penalty for the model dimension obtains the 
maximum value. An easy-to-compute penalized maxi-
mum likelihood criterion often employed in statistics 
is the Akaike information criterion (AIC) proposed in 
Akaike (1974). The argument underlying the AIC is 
that if 2 models favor the data equally well, the more 
parsimonious should be chosen. Such evidence can be 
reached through minimizing the expression:

 AIC p M ki i i= - ( )é
ëê

ù
ûú{ }+2 2log , ,y | q  [1]

where θi stands for the parameters and ki for the di-
mensions of the ith model (Mi).

Studying the asymptotic behavior of the Bayesian es-
timators under a special class of priors, Schwarz (1978) 
proposed the Bayesian information criterion (BIC). In 
a general statistical context, BIC recommends choosing 
the model that maximizes the expression:

 BIC p M k ni i i= ( )é
ëê

ù
ûú - ( )log , log .y | q

1

2
 [2]

The BIC differs from AIC only in the fact that the di-
mension is multiplied by 0.5 log(n); this implies that 
the former leans more toward lower dimensional mod-
els, and for large numbers of observations, the proce-
dures differ markedly from each other, as noted by 
Schwarz (1978). Because models were compared within 
a Markov chain Monte Carlo framework, the distribu-
tion of the data conditionally to the posterior means of 

the parameters given a model, p Mi iy | ˆ, ,q( )é
ëê

ù
ûú

 was used 

to compute the BIC and AIC. It is important to note 
that these criteria are valid large-sample criteria be-
yond the Bayesian context, because they do not depend 
on the prior distributions.

The models were also compared using strictly Bayes-
ian measures of fit. Considering the problem of compar-

ing complex hierarchical models in which the number 
of parameters is not clearly defined, Spiegelhalter et 
al. (2002) proposed the deviance information criterion 
(DIC) for comparing models:

 DIC D  D i= - ( )2 q ,  [3a]

where

 D= 2 log p M  p Mi i i i i- ( )é
ëê

ù
ûú ( )ò y y| , | , ,q q qd  [3b]

and

 D 2 log p Mi i iq q( ) = - ( )é
ëê

ù
ûú

y | ˆ, .  [3c]

The authors defined a measure for the effective num-
ber of parameters in a model as the difference between 
the posterior mean of the deviance [3b] and the devi-
ance at the posterior means of the parameters of inter-
est [3c]. Models with a smaller DIC should be favored, 
because this indicates a better fit and a smaller degree 
of complexity.

The goodness of fit at different points along the 
growth curve was compared using the check function 
(g) proposed by Gelfand et al. (1992), with g = 1 if Yij 
< yij and g = 0 if Yij ≥ yij. The expected value E(g|y_ij) 
was calculated for each observation and indicated the 
probability of a predicted value being greater or lesser 
than the observed one. The expectations calculated 
for all individuals with a record at a given point j in-
dicated the goodness of fit at this point. The closer 
the mean in each point is to 0.5, the better the fit. 
Values greater than 0.5 indicated a greater probability 
of obtaining predictions less than the observed values, 
whereas means less than 0.5 indicated a greater prob-
ability of obtaining predictions greater than the true 
value. Therefore, this check function allowed an evalu-
ation of goodness of fit at different points along the 
growth curve in a probabilistic setting. The mean of 
the probabilities at all points of the trajectory was also 
accounted as an overall fit criterion. Details about the 
implementation of the Gelfand’s check function were 
described in Forni et al. (2007).

RESULTS AND DISCUSSION

Although the letters used to represent the param-
eters are the same in all functions, they do not have the 
same mathematical meaning. Comparisons of estimates 
from different functions might be wrong. Biological as-
sociations are possible: a represents the asymptotic BW 
and is the only parameter comparable across models, 
b is a parameter related to the initial conditions, k is 
related to the maturation rate, and M determines the 
point when the acceleration phase of growth ends. The 
posterior means of adult BW (parameter a) ranged 
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from 531.78 to 586.89 kg (Table 3). The estimates were 
greater than those found in the literature for Nelore 
cattle (Carrijo and Duarte, 1999; Garnero et al., 2005; 
Santoro et al., 2005). However, in most studies, param-
eter convergence was achieved for a markedly smaller 
number of animals than that evaluated here, and BW 
records were limited to 18 or 24 mo of age. Thus, most 
estimates of adult BW presented in the literature can be 
considered extrapolations. Only Garnero et al. (2005) 
reported estimates of parameter a obtained for a data 
set of Nelore females weighed after 2 yr of age. Their 
estimates are similar to those obtained in the present 
study, ranging from 501.11 to 552.77 kg, although they 
are not adjusted for genetic and environmental effects.

The differences between our estimates and those 
from other studies can also be due to differences in 
populations sampled. Rosa et al. (2000) evaluated the 
adult BW of Nelore cows considering BW obtained in 
autumn and winter from animals with a minimum age 
of 3.5 yr and reported mature BW ranging from 330 
to 585 kg, with a mean of 485 kg. Extracting from the 
present data set the records of animals with a minimum 
age of 3.5 yr, the BW ranged from 384 to 762 kg (mean 
of 539.03 kg).

Comparisons of asymptotic BW obtained with differ-
ent functions using the same fitting error model showed 
that the Brody model provided greater estimates. These 
results are similar to those reported by Oliveira et al. 
(2000) and Garnero et al. (2005) in studies on growth 
of Zebu females. Considering the same growth function, 
greater adult BW were estimated when the fitting error 
variance was considered constant along the trajectory. 
According to Varona et al. (1997), different approaches 
to model the growth curve fitting error variance can re-
sult in differences in parameter estimates. Here, highly 
similar estimates of adult BW were obtained using ei-
ther linear or exponential models to describe the vari-

ance of fitting errors. The differences between adult 
BW estimates obtained in different data sets reflect 
both the amount of information provided by the data 
and selection effects. Culling is the main reason for not 
having mature BW records in DS2 and DS3. Thus, dif-
ferent functions can work differently to predict adult 
BW in light of selection.

Table 4 presents estimates from the overall goodness-
of-fit criteria in the different data sets. The Gelfand’s 
function means indicated closely similar fits for all func-
tions. Differences in AIC greater than 2 indicate differ-
ences in goodness of fit, according to Burnham and 
Anderson (1998). Both AIC and BIC indicated that 
goodness of fit improved when the fitting error variance 
was not considered to be constant along the trajectory. 
Also, differences favoring exponential models against 
the linear model were observed with all growth func-
tions apart from the Gompertz. Mazzini et al. (2003), 
studying growth curves of Hereford cattle, also report-
ed better fit of growth functions when heterogeneity in 
fitting error variance was assumed.

Differences between growth functions were not ob-
served when the fitting error SD were considered con-
stant along the curve. Numerous studies comparing 
nonlinear functions to describe cattle growth assumed 
homogeneous fitting error variance and did not report 
differences between models (Oliveira et al., 2000; Behr 
et al., 2001; Mazzini et al., 2003; Garnero et al., 2005). 
Here, the disadvantage of increasing the number of pa-
rameters to account for heterogeneity of fitting error 
variance was overcome by better overall fit. The Brody 
function with the same exponential model describing 
fitting error SD presented decreased values of AIC and 
BIC than the other functions for all data sets. Accord-
ing to these criteria, more accurate predictions can be 
expected applying the Brody function. Similar results 
were reported by Garnero et al. (2005).

Table 3. Posterior means and SD of Nelore asymptotic BW (kg) considering SD of fitting errors constant (cst), 
increasing linearly until 3 yr of age (lin), or following a nonlinear function (exp) 

Model

Asymptotic BW (kg)

DS41 DS32 DS23

Means SD Means SD Means SD

Gompertz (cst) 544.84 34.21 550.84 60.07 542.35 39.60
Gompertz (lin) 537.07 39.44 532.75 41.92 532.52 43.07
Gompertz (exp) 541.49 41.02 538.81 44.09 531.78 43.26
Von Bertalanffy (cst) 552.57 44.20 564.37 61.04 551.61 41.76
Von Bertalanffy (lin) 542.23 39.58 539.18 42.09 540.09 43.81
Von Bertalanffy (exp) 541.18 39.50 538.96 42.01 539.49 45.31
Brody (cst) 580.52 46.29 583.25 38.56 586.89 47.15
Brody (lin) 562.47 44.35 562.16 47.17 565.22 56.34
Brody (exp) 560.66 44.92 560.49 48.55 564.64 55.75
Logistic (cst) 548.63 42.36 541.23 42.50 542.36 49.65
Logistic (lin) 532.47 38.71 527.30 41.78 526.56 42.88
Logistic (exp) 535.80 40.32 531.84 46.61 532.17 44.88

1Data for females weighed at least once after 4 yr of age.
2Data for females weighed at least once after 3 yr of age.
3Data for females weighed at least once after 2 yr of age.
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Spiegelhalter et al. (2002) suggested that models dif-
fering in up to 2 units of DIC can be considered similar, 
whereas differences of 3 to 7 units indicate less evidence 
of similar fit. These differences represent variations on 
a logarithmic scale; therefore, even small numbers are 
associated with large values of deviance. Estimates of 
DIC indicated a better fit of functions when fitting er-
ror variance was considered to be heterogeneous. In 
contrast to AIC and BIC, differences favoring the lin-
ear model over the exponential models were observed, 
except for the Gompertz function. Akaike information 
criterion and BIC penalize more parameterized mod-
els purely based on a fixed number of parameters; the 
penalty imposed by DIC depends on prior information 
about the parameters and the information provided by 
the data. The different functions presented a similar 
fit when the SD of the fitting error was considered to 

be constant. On the other hand, differences between 
functions were observed when assuming linear or expo-
nential variation. The Brody function represented the 
data better, whereas the worst fit was obtained with 
the logistic function in all data sets.

The mean values obtained from Gelfand’s check func-
tion for the 3 data sets are shown in Figures 1, 2, and 3. 
All growth functions presented similar prediction pat-
terns at the same stages of growth. They under- or 
overestimated the BW to a greater or lesser extent. All 
functions provided less accurate predictions at the be-
ginning of the growth curve, and predictions were more 
accurate after 48 mo of age. The Brody function pro-
vided more accurate estimates of birth weights; this was 
also observed by Garnero et al. (2005). The probability 
of overestimating birth weights was greater with other 
functions than with the Brody function. The greatest 

Table 4. Akaike information criterion (AIC), Bayesian information criterion (BIC), means of Gelfand’s check func-
tion (G), and deviance information criterion (DIC) of different nonlinear functions considering SD of fitting errors 
constant (cst), increasing linearly until 3 yr of age (lin), or following a nonlinear function (exp) 

Item AIC BIC DIC G

DS41

 Gompertz (cst) 226,831 −113,870 228,661 0.4974
 Gompertz (lin) 199,652 −100,301 203,023 0.4967
 Gompertz (exp) 200,922 −100,956 204,352 0.4963
 Von Bertalanffy (cst) 226,582 −113,744 228,534 0.4981
 Von Bertalanffy (lin) 214,449 −107,699 184,452 0.4965
 Von Bertalanffy (exp) 197,971 −99,481 201,525 0.4978
 Brody (cst) 226,604 −113,756 227,878 0.4946
 Brody (lin) 214,768 −107,987 179,076 0.5005
 Brody (exp) 192,738 −96,864 195,935 0.4974
 Logistic (cst) 226,989 −114,039 228,923 0.4911
 Logistic (lin) 214,441 −107,695 204,979 0.4979
 Logistic (exp) 205,394 −101,394 210,345 0.4975
DS32

 Gompertz (cst) 264,529 −132,726 267,154 0.4953
 Gompertz (lin) 234,578 −117,772 238,789 0.4964
 Gompertz (exp) 236,115 −118,561 240,258 0.4957
 Von Bertalanffy (cst) 264,427 −132,717 266,483 0.4961
 Von Bertalanffy (lin) 249,449 −125,207 219,277 0.4961
 Von Bertalanffy (exp) 234,642 −116,894 236,695 0.4971
 Brody (cst) 265,532 −132,792 264,641 0.4983
 Brody (lin) 244,044 −122,620 214,124 0.5003
 Brody (exp) 225,920 −112,989 230,145 0.4977
 Logistic (cst) 265,889 −132,849 267,385 0.4894
 Logistic (lin) 255,957 −124,986 244,876 0.4974
 Logistic (exp) 240,867 −119,063 250,044 0.4968
DS23

 Gompertz (cst) 298,920 −149,928 302,057 0.4964
 Gompertz (lin) 266,684 −133,370 271,576 0.4957
 Gompertz (exp) 266,720 −133,390 271,660 0.4973
 Von Bertalanffy (cst) 298,882 −149,468 301,654 0.4971
 Von Bertalanffy (lin) 281,325 −140,691 251,436 0.4957
 Von Bertalanffy (exp) 264,280 −132,170 269,164 0.4964
 Brody (cst) 300,015 −150,035 299,654 0.4983
 Brody (lin) 274,184 −137,120 245,944 0.4995
 Brody (exp) 256,396 −128,228 261,270 0.4979
 Logistic (cst) 300,888 −150,983 302,334 0.4896
 Logistic (lin) 283,044 −141,550 260,410 0.4967
 Logistic (exp) 270,870 −135,987 282,435 0.4963

1Data for females weighed at least once after 4 yr of age.
2Data for females weighed at least once after 3 yr of age.
3Data for females weighed at least once after 2 yr of age.
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probabilities were observed using the logistic function. 
These results support the hypothesis that cattle are 
more mature at birth compared with other species, as 
if they had already passed the phase of growth accel-
eration (Arango and Van Vleck, 2002). Hence, a non-
sigmoidal function would be more adequate to describe 
the growth in this species.

The different models showed a high probability of 
over- or underestimating BW until about 48 mo of age. 
Afterward, the check function expectations remained 
closer to 0.5. The poor fit during the initial phase of 
growth was not surprising, because of the wider rela-

tive variation of records at the beginning of the growth 
curves. Before maturity, the models presented alternat-
ing good and poor performance. However, models in 
which the fitting error variance was considered to be 
constant provided more accurate predictions of initial 
BW. The models used to describe the fitting error did 
not adequately represent the variance of this parameter 
at the beginning of the curve. This lack of fit was not 
observed in the analysis of the overall fitting criteria, 
which are more influenced by the predictive power in 
the final part of the curve due to a scale effect. The 
analysis of the Gelfand’s check function demonstrated 

Figure 1. Mean expectations of Gelfand’s check function analyzing 
data for females weighed at least once after 4 yr of age with differ-
ent nonlinear models, considering SD of fitting errors constant (cst), 
increasing linearly until 3 yr of age (lin), or following a nonlinear 
function (exp).

Figure 2. Mean expectations of Gelfand’s check function analyzing 
data for females weighed at least once after 3 yr of age with differ-
ent nonlinear models, considering SD of fitting errors constant (cst), 
increasing linearly until 3 yr of age (lin), or following a nonlinear 
function (exp).
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that it is possible to detect pointed errors and choose a 
function based on the goodness of fit at different parts 
of the growth curve. Usually, Nelore animals are slaugh-
tered close to 36 mo of age. Until this point, none of the 
models presented clear advantages against others.

High probabilities of predicting BW correctly after 4 
yr of age were observed using all functions. The expec-
tations between 48 and 100 mo of age ranged from 0.48 
to 0.56. The greatest discrepancy in values from 0.5 
was observed with the logistic function, which showed 
a marked tendency to underestimate BW after 60 mo 
of age (Figures 1, 2, and 3).

Gompertz, Von Bertalanffy, and Brody functions ac-
curately predicted adult BW, and biologically unac-
ceptable estimates were not observed. Models that cor-
rectly describe the increase in fitting error variance at 
the beginning of the growth curve require further stud-
ies. Albuquerque and Meyer (2001), in a phenotypic 
analysis of growth data from Nelore animals up to 630 
d of age, found that a linear logarithmic function pro-
vided a better fit of error variance than the assumption 
of homogeneity. Mazzini et al. (2003) reported a better 
fit of nonlinear functions to growth data of Hereford 
cattle by weighting records by their inverse variance in 
classes of 40 d of age.

Optimum size for beef cattle has been debated 
among researchers and breeders. Selection programs 
have placed emphasis on growth, favoring faster grow-
ing animals, but also have led to an increase in mature 
size that may not necessarily be advantageous. Beef 
cattle have a low rate of reproduction and high mater-
nal cost per animal slaughtered. Mature BW, predicted 
by parameter a of growth curves, could be included 
in selection indexes with its corresponding economic 
value. This parameter could be accurately predicted 
by combining individual BW with information derived 
from relatives in hierarchical models.

The Gompertz, Von Bertalanffy, and Brody functions 
are all adequate to establish mean growth patterns and 
to predict the adult BW of Nelore females. The Brody 
model is more accurate in predicting the birth weight of 
these animals and has better overall fit. The prediction 
of adult BW using nonlinear functions can be accurate 
when growth curve parameters and their (co)variance 
components are estimated jointly. The hierarchical 
model used in the present study can be applied to the 
prediction of mature BW in herds where a portion of 
the animals are culled before they reach adult age.
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APPENDIX

Assuming independence among individuals, the con-
ditional distribution of data y, given the curve param-
eters, is a product of normal distributions. Considering 
the Brody function:
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and considering the logistic function:
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where θ represents the vector with the growth function 
parameters,  se

2  is the fitting error variance,  N is the 
number of individuals with data, and ni is the number 
of BW recorded on each individual i.

The density of the growth curve parameters, given 
the genetic and environmental effects, is a multivariate 
normal distribution:
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where β represents the systematic effects; u is the vec-
tor of additive genetic effects; G is the genetic (co)-
variance matrix; c is the vector of maternal permanent 
environmental effects; P is the maternal effects (co)-
variance matrix; R is the residual (co)variance matrix; 
X, Z, and W are incidence matrices; and I is an iden-
tity matrix.
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The fully conditional distributions of growth function 
parameters are products of the likelihood [4] and the 

prior distribution [5]. Supposing ai , bi , ki , and Mi  are 
the means of parameters given the genetic and environ-
mental effects and  raa, rbb, rkk, rMM, rab, rak, raM, rbk, and 
rkM are elements of the inverse of the residual (co)vari-
ance matrix (R), the fully conditional distribution of 
parameter a in the Brody function can be written as:
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The fully conditional distribution of parameter b is:
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The fully conditional distribution of parameter k is:
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The fully conditional distribution of parameter a in 
the logistic function is:
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Finally, the fully conditional distribution of param-
eter M is:
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and
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